Abtstract Data Types and Trees

Abhinav Ashar
CS 61B: Data Structures and Algorithms

March 25, 2019

1 Abstract Data Types

What is an Abstract Data Type?

Abstract data types are a concept in Java that allows for the flexible use of objects. Differ-
ent pieces of data work in different ways, and it is impossible to anticipate all the different
possible functionalities. Thus, programmers use abstract data types to define the general
structure of a class, but not specify how exactly it should work. In essence, it ties together
data and functionality.

Why do we use an Abstract Data Type?

Abstract Data Types create a layer of abstraction. This is because we don’t always know
the type of data we are working with. Is it an List of Strings or ints? It is a Set of Doubles
or chars? Because we don’t know the possible specific implementations and we don’t want
be redundant by providing all the different implementations, we provide a generic type and
don’t specify how it should work.

How to use an Abstract Data Type?

Use the <> symbol with parameters that will be the different, unspecified types

2 Trees

Binary Trees
As the name may suggest, binary trees are trees where each node has up to 2 children.



One of the ways we can represent a BinaryTree class is to have a Node subclass since every
binary tree is made up of nodes. Each Node would have a value (generic type) and two Node
pointers, left and right. This allows us to go from one node to its children, down a path of
the tree. If a node does not have one or both children, then either left, right, or both are
equal to null.

Balanced Binary Trees
When working with a binary tree, there are many ways in which the data can be distributed.
In one case, the tree can end up looking like a single linear path.

This is called a spindly tree. When it comes to the different types of trees, this tends to be
the most inefficient version because it has a height of n. This is important because many
operations (add, contains etc.) in the worst case require us to go down to the leaf, which
will force us to traverse n nodes in this case.

On the other hand, there could be a tree where each node has both a left and right,
except for leaves.

This is a balanced tree, one of the best versions of a tree that has a height of approximately
logn. The proof for why this is true is not necessary to know, but if you really want to know
it, here is a good explanation. Since it has a height of about logn, going down to the leaf
for some operations will only require us to traverse log n nodes, which is much more efficient
than n.


https://math.stackexchange.com/questions/1355163/proving-that-a-binary-tree-of-n-nodes-has-a-height-of-at-least-logn

	Abstract Data Types
	Trees

