
Tail Recursion and Streams

Abhinav Ashar
CS 61A: Structure and Interpretation of Computer Programs

January 18, 2019

1 Tail Recursion

Tail recursion is a powerful concept in computer science that helps with the space efficiency
in programs. A tail recursive function is where all the recursive calls of a function are in
tail contexts. As mentioned in the CSM worksheet: An ordinary recursive function is like
building up a long chain of domino pieces, then knocking down the last one. A tail recursive
function is like putting a domino piece up, knocking it down, putting a domino piece up
again, knocking it down again, and so on. This metaphor helps explain why tail calls can
be done in constant space, whereas ordinary recursive calls need space linear to the number
of frames (in the metaphor, domino pieces are equivalent to frames).

a) Often, to convert recursion to tail recursion, you make sure all of your values are part
of the function arguments (see tail recursion example below) rather than being applied
to the recursive call of a smaller recursion function (see ordinary recursion example
below). As a result, the lines that contain the recursive call should normally not be
doing anything outside of the recursive call like +,* etc. (operations inside are okay)

b) If the recursive call is not being ”returned”, then there should not be any code after
the recursive call because that requires keeping the frame open. Note that this does
not mean that the recursive call can only be the last line. It can also be in the mid-
dle of the function, but after the value is returned from that recursive call, the value
should immediately be returned to the previous frame rather and the program should
not proceed to the following line the same frame.
TLDR: Tail recursive calls should be on lines that ”return”

Not Tail Recursive:
recursiveCall(x+1, y+x)
return x + y ← extra code after recursive call = not tail recursive

Tail Recursive:
a = x + y
return recursiveCall(x+1, y+x)

1



c) Why is it useful? Tail recursion improves space efficiency. This is because the
function passes in the relevant number into the argument of the recursive call rather
than keeping the frame open and waiting for the value to be returned from that smaller
recursive call.

d) Ordinary Recursion Example:
foo(5)
5 + foo(4)
5 + (4 + foo(3))
5 + (4 + (3 + foo(2)))
5 + (4 + (3 + (2 + foo(1))))
5 + (4 + (3 + (2 + 1))) → 15

Tail Recursion Example:
foo(5,0)
foo(4,5)
foo(3,9)
foo(2,12)
foo(1,14)
foo(0,15)

2 Streams

Streams are tool used for lazy evaluation in computer science. Unlike regular expressions in
Scheme, streams in Scheme allows us to compute specific values up to a certain point and
create a ”promise” to compute future values. This allows you to create a list that can change
the way it computes number halfway through a Scheme list.

a) cons-stream creates a lazy Scheme list where the first element is an explicit value and
the second element is an expression to be computed (a promise)

b) car (no such thing as car-stream) evaluates the first value of the stream like normal
Scheme

c) cdr-stream computes and returns the rest of the stream in the form of a promise.
First time you call cdr-stream on a particular stream, it computes and returns the
value. However, if you call cdr-stream on the same stream again, it won’t recompute
the value again; rather, it will return the value you previously computed (caches it)

d) cdr returns the second element of the stream, which is a promise (a promise that the
expression will be evaluated at some point of time in the future)

e) Forced Promise - had forced the computation of cdr in the past using cdr stream

f) Unforced Promise - has not called cdr-stream yet on the stream’s cdr

g) Delay - creates a promise and doesn’t evaluate it

2



h) Force - forcibly computes a promise

i) cons-stream uses delay under the hood and cdr-stream uses force under the hood

3


