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1 Trees

Binary Search Trees
A binary search tree (BST) is a specific type of binary tree that provides some ordering
within itself. It can be extremely useful when working with data that needs to be relatively
compared with other data. All BSTs follow this invariant: nodes smaller than a certain node
will be stored to the left, and nodes greater than a certain node will be stored to the right.
Any nodes equal can be arbitrarily stored to the left or right.
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Let’s look at the invalid BST. At first glance, everything seems to look correct. However,
notice that 8 is on the left branch of 7, which breaks the rule of a binary search tree. Thus,
this is an invalid BST. On other hand, look at the valid BST. There is no node in the left
branch that is greater than 7, and there is no node in the right branch that is less than
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7. Thus, this is a valid BST. Notice that BSTs can also face some of the same problems
as regular binary trees: they can become spindly. One way this is possible is if you have a
sorted list of numbers and add each number to the tree in order. Since each number is less
than the next, all new nodes be added to the rightmost part of the tree, forming a spindly
tree. The way we can deal with spindly, or unbalanced, trees is that we can rotate them
such that we decrease the total height and make them more balanced. Here is an example
of rotating a tree clockwise with respect to 2 (though it does not improve the height in this
case):
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For rotating clockwise with respect to a certain node n, follow these rules:

1. Put n as the root of the tree

2. n.left forms the root of the sub-tree for the left branch of n

3. n.parent forms the root of the sub-tree for the right branch of n

4. n.right becomes the left child of the n’s right child from step 3

For rotating counter-clockwise with respect to a certain node n, follow these rules:

1. Put n as the root of the tree

2. n.right forms the root of the sub-tree for the right branch of n

3. n.parent forms the root of the sub-tree for the left branch of n

4. n.left becomes the right child of the n’s left child from step 3

One way to know if a tree is unbalanced is if rotation can decrease the total height.
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In this case, the height of the tree decreased from 2 to 1. A quicker way to know if a tree
is unbalanced is to level-by-level horizontally, and check from left to right if there is a node.
If we visit all the nodes that exist before encountering the first vacancy, then the tree is
balanced. Else, it is not.
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2-3 Trees
BSTs are very helpful, but they have a big problem: they need to be rotated in order to
be balanced. This can be very inefficient, so 2-3 trees provide an answer to this problem
by being self-balancing. 2-3 trees means that a node can have at most 2 values in it, and a
node can have at most 3 children. Follow the same rules of BSTs when adding a value to a
2-3 tree, but now you can add multiple values to a node. Within a node, the values should
be in increasing order from left to right. If the number of values in a node becomes 3, then
restructure the tree by promoting the middle value and making the left and right values as
children to the higher node.
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This new 2-3 implies that a ≤ b ≤ c and c ≤ d ≤ e and e ≤ f .

Red Black Trees
In this note, we have learned about BSTs and 2-3 trees. BSTs provide a defined structure,
but they require rotation to balance. 2-3 trees are self-balancing, but are actually quite com-
plicated to implement in code. As a result, we have Red Black trees, which are self-balancing
and very easy to implement. Red Black trees are functionally the same as 2-3 trees but just
look slightly different. This is because we take a node with multiple values in it and split
it up, creating red ”glue” links between these split values. The red link indicates that they
are actually part of the same node, but have been split up for implementation purposes.
When we split the node, the smaller of the two numbers becomes the left child of the larger
number. This represents a Left-Leaning Red Black trees (LLRB).

Here are a few more properties of Red Black trees:

a) Despite adding the extra red edge, the red edge does not actually increase the height
of the Red Black tree (real height of Red Black Tree is the height of the 2-3 tree)

b) Normally has no more than about 2 times the height of the 2-3 tree

c) No 2 red links can be next to each other because that would essentially represent a
3-node (not possible in a 2-3 tree)

d) When modifying a Red Black tree (such as adding), it is often easier to convert the
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Red Black tree to a 2-3 Tree, carry out the operation, and convert back to a Red Black
tree

2 Hashing

All the above data structures are great for accessing an item or checking whether an item
exists in the data structure, but can we do better? In fact, we can with the concept of
hashing. Hashing allows us to use the properties of an object to determine a hashcode that
will allow quick access to the object. Think of it like a row of boxes, where we place an
object in a certain box based on the properties of an object that determine the hashcode.
Thus, if we wanted to look for that object afterwards, we don’t need to look through all
the boxes. We simply use the properties of the object we are looking for to calculate the
hashcode and look in that specific box. There are some major rules when it comes to adding
items to data structures that utilize hashing:

1. Never store objects that can change because this can cause an object to be located in
box different from where it is expected

2. Never override equals without overriding the hashcode

3. Hashcodes must be consistent, have an equality constraint, and have uniqueness

a) Consistent: the hashcode method must consistently return the same integer if
nothing about the object changes

b) Equality Constraint: if two objects are equal according to the equals() method,
then their hashcodes must be equal

c) Uniqueness: if two objects are unequal according to the equals() method, then
their hashcodes must be unequal

Lastly, there is a load factor to keep track of. When we determine which box to look it,
we simply need to take the time to look through all the objects in the box. However, if
there are too many items in the box, this can be inefficient as well. This is referred to as
having too many collisions. As a result, we need to increase the number of total boxes and
re-determine the hashcode for every item. While this seems like it would be inefficient, it
happens so infrequently that the runtime for hashing operations (add, contains, get etc.) is
amortized constant time.
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